Experiments involving grafting of Drosophila PAX6 into Drosophila limbs or wings can place eyes in incorrect positions; when mice PAX6 is inserted into Drosophila, it is expressed as mouse-like. These grafting tests indicate that the adjustability for change does not lie in the genes as in the regulatory network of genes that code for expression. The need by to redefine homology at different hierarchical levels is also indicated in other characters. For a long time, arthropod compound eyes had been thought to have evolved rather independently of the vertebrate simple eye; now this seems improbable given the immense similarity between cephalopod and vertebrate eyes (commonly attributed to convergence). In essence, the gene starting eye formation is homologous but it's expression is not necessarily homologous. Hierarchical disconnect in the form of nonhomologous traits causing homologous characters is also noted. With the exception of urodele amphibians, all tetrapods develop tissue between their primordial digits and later undergo apoptosis. But in newts and salamanders, there is no need for apoptosis and digits take a separate developmental pathway. The evolutionary hypothesis is that salamanders and newts (or one of their ancestral species) lost the ability of apoptosis between digits and differential growth is a derived process. Novel genes exchanged for older ones can also cause the same homologous morphology (co-option of genes during evolution for very distinct functions).
Thursday, 3 October 2013
Homology- A Unified Definition
Experiments involving grafting of Drosophila PAX6 into Drosophila limbs or wings can place eyes in incorrect positions; when mice PAX6 is inserted into Drosophila, it is expressed as mouse-like. These grafting tests indicate that the adjustability for change does not lie in the genes as in the regulatory network of genes that code for expression. The need by to redefine homology at different hierarchical levels is also indicated in other characters. For a long time, arthropod compound eyes had been thought to have evolved rather independently of the vertebrate simple eye; now this seems improbable given the immense similarity between cephalopod and vertebrate eyes (commonly attributed to convergence). In essence, the gene starting eye formation is homologous but it's expression is not necessarily homologous. Hierarchical disconnect in the form of nonhomologous traits causing homologous characters is also noted. With the exception of urodele amphibians, all tetrapods develop tissue between their primordial digits and later undergo apoptosis. But in newts and salamanders, there is no need for apoptosis and digits take a separate developmental pathway. The evolutionary hypothesis is that salamanders and newts (or one of their ancestral species) lost the ability of apoptosis between digits and differential growth is a derived process. Novel genes exchanged for older ones can also cause the same homologous morphology (co-option of genes during evolution for very distinct functions).
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment